Searching and Navigating Petabyte-Scale File Systems
Based on Facets

_Jonathan Koren
jonathan@soe.ucsc.edu

Andrew Leung
aleung@soe.ucsc.edu

Yi Zhang
yiz@soe.ucsc.edu

Carlos Maltzahn
carlosm@soe.ucsc.edu

Sasha Ames
sasha@soe.ucsc.edu

Ethan Miller
elm@soe.ucsc.edu

Jack Baskin School of Engineering
University of California Santa Cruz
Santa Cruz, CA 95032, USA

ABSTRACT

As users interact with file systems of ever increasing size, it
is becoming more difficult for them to familiarize themselves
with the entire contents of the file system. In petabyte-scale
systems, users must navigate a pool of billions of shared files
in order to find the information they are looking for. One
way to help alleviate this problem is to integrate navigation
and search into a common framework.

One such method is faceted search. This method originated
within the information retrieval community, and has proved
popular for navigating large repositories, such as those in e-
commerce sites and digital libraries. This paper introduces
faceted search and outlines several current research direc-
tions in adapting faceted search techniques to petabyte-scale
file systems.

Categories and Subject Descriptors

D.4.3 [File Systems Management]|: File organization;
E.5 [Files]: Sorting/searching; H.3.3 [Information Search
and Retrieval]: Search process

General Terms
design, management

Keywords

faceted search, information retrieval, petabyte-scale storage,
enterprise search, metadata, semantic file system, virtual
directory

1. INTRODUCTION

As storage capacities increase, organizations have, and will
continue to, take advantage of the situation to store larger

and more diverse amounts of data. While these reposito-
ries are useful, they impose challenges. Organizing billions
of shared files is difficult, especially when considering the
differing needs of users. Furthermore, it can be difficult for
a single user to know what is even in the repository, let
alone where to find it. An attractive method to solving this
dilemma is to make search an integral part of file system.

Traditional keyword and metadata search is most effective
when a user can correctly express what he/she is searching
for with a few key terms. But what about when the user
cannot express him/herself clearly or effectively? What if
the user is not even aware of what he/she is searching for
in the first place? In these scenarios, the user must explore
the search space, without being overwhelmed by the size of
the space. Traditional directory hierarchies are not a viable
solution to this problem as it presupposes that the user is
already familiar with where the files he/she is searching for
are stored and how they are named. This problem is not
unique to file systems. A similar problem exists in the infor-
mation retrieval (IR) community. One method used in IR
to solve this problem is faceted search.

2. SEARCH AS NAVIGATION

Traditionally, file systems have been organized as a single
monolithic hierarchy. While this paradigm has served well,
it does suffer from a major drawback. Each file exists in a
specific location. Even with the inclusion of symbolic and
hard links, files tend to have only a few specific locations and
names. As the diversity of the files increase it becomes more
difficult to fit each file into a specific location. Complicating
matters, often there is not one “right” answer, but rather
multiple, equally reasonable answers. Deciding which one
to use, is often a rather arbitrary process [12]. This can
lead to confusion when a user believes that one of the other
possibilities is somehow “more correct.”

One solution to solving this problem is to simply avoid im-
posing a hierarchy on the files, and instead allow users to
search for the files they are interested in. While conven-
tional keyword search queries no doubt have their place,
they are not very conducive to exploration, since they re-
quire the user to possess some knowledge about the contents
of the file system and relevant files in order to issue effec-
tive queries. What is needed is a technique that converts



search for a series of query-responses into a more interac-
tive browsing scenario. One such technique that has gained
popularity, especially with large data repositories, libraries,
and e-commerce sites, is faceted search.

Faceted search is built on the idea of faceted metadata. Faceted

metadata are sets of key-value pairs associated with a file.
The keys, called “facets,” allow the values to be grouped
into semantically meaningful ways. Each file has multiple
facets associated with it, and can have multiple values as-
sociated with each facet. For example, an MP3 music file
could have facets such as title, artist, and album, in addition
to traditional POSIX metadata such as owner, group, file
size, and access time.

In faceted search, users are presented with a list of facets
associated with the files stored in the file system, along with
some of the values associated with each facet. By present-
ing multiple facets and their values simultaneously, the user
is shown multiple parallel categorization schemes. By arbi-
trarily combining these facet-value pairs, users can formu-
late effective search queries without any prior knowledge of
the contents of the system being searched. Each time a user
adds or removes a facet-value pair to/from his/her query,
the list of results changes, as does the facet-value pairs that
are available to the user for refining the search. By updating
the facet-value list as dynamic taxonomies, the user is never
presented with options that can lead to empty results.

Since it is the combination of metadata that describes the lo-
cation of a file, there can exist multiple equally valid “paths”
to the file, thereby enabling the files to be organized and re-
organized according to the current needs of the user instead
of in a single one-size-fits-all approach. Extending this anal-
ogy, one can think of the current query as being the current
working directory, with the results of the query being the
contents of the directory.

3. CREATING AND INDEXING FACETED
METADATA

In order to use faceted metadata for navigation, we must
make two assumptions. First, that the metadata exists in
some form and second, that the metadata can be stored in
some easily retrievable form. This first assumption is self-
evident. The second assumption is most commonly satisfied
in both the information retrieval and file system communi-
ties through the use of an inverted index. In the simplest
form, an inverted index maintains a table that maps pieces
of metadata to the files that contain that metadata. Infor-
mation is loaded into the index through the use of indezers®,
which use special routines, called parsers, that understand
the internal structure of specific file types, and can therefore
extract useful features from the files.

Currently, many deployed faceted search systems rely on
structured data with some manual metadata annotations.
This is not a reasonable solution when dealing with bil-
lions of files. Research into automatically extracting useful
faceted metadata from existing files is on going within both
the information retrieval and semantic file system commu-

Indexers are also known as transducers in the semantic file
system community.

nities.

The first source of faceted metadata about a file is the struc-
tured metadata that is already associated with a file. For
example, MP3 music files often have metadata such as title,
artist, and album stored within them. By using indexers,
the metadata can be re-indexed automatically whenever the
file is modified.

Unfortunately, not all files contain such conveniently for-
matted metadata. In many files, the relevant metadata is
embedded in the content of the file. One focus of current
IR research is to extract faceted metadata from unstruc-
tured text. Ome such project is Castanet[19]. Castanet
reads small snippets of text that are associated with spe-
cific files (e.g. document titles), and combines these terms
with WordNet[6], a thesaurus that lists synonyms and hy-
pernyms of English words, to create multiple facets that can
be used to describe the document collection.

Both of the previous approaches assume that the files are
indexable, that is useful information can be easily and reli-
ably extracted from the contents of the files. This is not true
for many types of files. Numerous proprietary data formats
are essentially opaque outside of the originating application.
Ideally, an interface between applications and the file system
would be utilized to allow applications to directly store rel-
evant metadata about their files. Failing that, user supplied
metadata must be used to supplement what can be gathered
from the files themselves.

Graffiti[14] is an experimental client-server application that
allows individual users to tag files with short descriptive
keywords. These tags can then be combined with the tags
from other users in order to help organize and manage the
file system. By being a collaborative system, the work of
annotating files becomes distributed. Multiple opinions can
encourage a richer and more inclusive description of the files.
Given these features, a collaborative system is believed to be
fundamental to the successful employment of user annotated
metadata in any large scale system.

While not directly extracting metadata, research into mon-
itoring file access[18] and interprocess communication[17]
patterns have been used to determine how closely related
files are. With this information, it is possible to allow the
metadata that is associated with one file to propagate to the
other related, but unannotated files.

4. SYSTEMS SUPPORT FOR
FACETED METADATA

The most closely related work to faceted search in the file
system community has been with semantic file systems. The
common ability shared by these systems is a means to query
for groups of files within the file systems interface. The
Semantic File System [9] contained its own B-Tree based
structures to store key-value pairs within the file system,
and utilized transducers to assign these pairs automatically
based on file content. Be File System [8] followed suit with
key-value pairs and B-Tree storage, but added a non-POSIX
compliant query interface that contained logical operations
for matching and range queries. The Inversion File Sys-
tem [15] contained an interface for SQL style queries for



files based on their metadata, but only added one extended
attribute for file type. It stored its metadata in an em-
bedded POSTGRES database. The Logic File System [16]
integrated a simple query language with into the POSIX in-
terface for searching for files based on tags. It used Berkeley
DB for its metadata store. Other systems, such as Spot-
light [3], Google Desktop Search [10], and Beagle [4], place
both the search interface and indexing along side the file
system, either requiring frequent reindexing or a notification
mechanism from the file system to keep its indices up-to-date
with file system changes.

The Linking File System (LiF'S) [2] also stored its metadata
within the file system itself. but did not contain indexing
structures or a working query interface (a simple one was
proposed). Like the other file systems, LiFS allowed arbi-
trary key-value pairs to be assigned to files, but also allowed
files to be associated together through relational links. Each
link, in turn, could also have multiple key-value pairs asso-
ciated with it. These features allowed for richer metadata
such as interfile relationships and data provenance to be ex-
pressed.

ViewFS follows the LiFS metadata model and integrates
traditional file system interaction with both keyword and
faceted search [1]. ViewFS accomplishes this by modify-
ing existing POSIX file system interface to support search
queries as file and directory names. Queries are specified in a
path-based language called QUASAR. Queries are first-class
file system objects in the form of virtual directories. The
name of such a virtual directory specifies the query and the
content of the directory represent the results of the query.
Modifications to the file system are immediately reflected in
the contents of virtual directories. This immediate reflection
of file system modifications requires a tight coupling of the
search functionality with the file system so that updates in
the file system are efficiently forwarded to the indexing and
virtual directory update components.

To enable faceted search applications, ViewFS and QUASAR
feature some key functionality. Obviously, it should provide
term-based search over faceted metadata. This feature we
carry over from previous semantic file systems. Secondly,
paths in QUASAR should contain a number of facets so tu-
ples of metadata values for each file shall be returned. We
adopt this feature from SQL. Finally, we improve existing
search through supporting the return of browseable dynamic
virtual directory hierarchies. This improves searching, since
such organized results may be presented directly to the user,
as opposed to dealing with long lists of results. We know of
no other system at present that enables browsing and search
using this abstraction. There are other novel features of
the QUASAR query language, including relationship-based
search and location-based search. We don’t discuss them in
this paper because they would not be utilized by our cur-
rent faceted search interface design. Nonetheless, we may
work to incorporate such features into future interfaces that
utilize faceted metadata.

4.1 Petabyte-Scale Indexing

In addition to building search into the file system interface,
there must be facilities that allow the indexing system to
scale with system size. An index for a petabyte-scale file

system must handle billions of files and the many tags, at-
tributes, facets, and links for each of these files. Moreover,
an index for a petabyte-scale file system must handle thou-
sands of queries per second, given the large number of users
for such a file system.

For petabyte-scale file systems, the indexing problem is closer
to that of web indices than those found in desktop search
tools, such as Apple’s Spotlight [3], Google’s Desktop Search
[10], or Beagle for Linux [4] because of the scale of the
index. Google’s uses GoogleFS [7] as an underlying stor-
age system for their approach to large-scale indexing, which
handle the large scale and query rate that petascale faceted
search requires; other web-scale systems such as that used
by Yahoo! adopt similar approaches. However, these ap-
proaches have several major shortcomings that make it un-
suitable for use in file system-based faceted search. First,
these approaches can only be udpated slowly, typically re-
quiring latencies of hours to incorporate new information
into the index. Google uses a separate, much smaller in-
dex to handle rapidly-changing news sites such as CNN, but
their approach does not scale to the billions of files in a
petabyte-scale file system. Second, web indexes have a sin-
gle facet, typically text-based content; petabyte-scale file
systems will have many types of files, each of which has a
features in a number of facets. Some facets, such as prove-
nance, are far more ambiguous, in contrast to hyper-link
relationships; others, such as information about files linked
to particular file, are larger and more context-sensitive than
text-based features. Thus, faceted search for petabyte-scale
storage cannot use existing techniques.

We are considering several approaches for indexes to sup-
port faceted search in very large file systems. To solve the
problem of immediate update, we are considering the use
of multiple levels of indices. The “top” level changes rela-
tively slowly, producing results that may be an hour or two
old. The system will also maintain smaller (and less effi-
cient) indices across the entire file system to allow searches
to cover more recently-changed metadata. Periodically, the
system will merge the two indices, keeping the top-level in-
dex up-to-date. Doing so in a “live” system is a challenge;
the standard approach of simply building a new index and
throwing out the old one may not work because the system
must always provide an up-to-date view of the index, in con-
trast to web-based systems for which the use of an hour-old
index during the merge process is acceptable.

We are also exploring approaches to partitioning the index.
Traditional text-based inverted indices used by web search
engines can be partitioned along two axes: documents and
terms, with most search engines using both approaches to
partitioning. This technique is successful because the parti-
tions are one-dimensional, and because each term lists all of
the documents associated with it. With multi-dimensional
faceted search, however, this approach is much less suc-
cessful because any partition along one facet is likely to
distribute other facets broadly, requiring all partitions to
be searched to find relevant documents using a distributed
facet. An alternate approach, distributing each facet sep-
arately, would make the index very large, requiring each
document to be listed many times, and would result in slow
searches because the index would have to merge lists for



each facet. Since a single value in a facet could apply to
many files, with only the combination being rare, this ap-
proach could be very slow. Because searches on subsets of
the facet space and subsets of the “linked” file space will be
common, we are considering approaches that partition the
space based on both facets and location.

S. USER INTERFACE

With support for faceted metadata and indexing integrated
directly into the file system, we propose to use a faceted
search interface to allow users to interactively search and
browse their shared petabyte-scale file system. We believe
this is a novel approach to file system interfaces. Within the
information retrieval community, faceted search has been
primarily focused on static document collections, such as li-
braries and e-commerce catalogs. Dynamic collections, such
as those found in shared storage, are not well studied. In
the file system community, work on semantic file systems
has primarily been focused on low-level issues such as load
balancing and system APIs, not on the end-user application
level. This proposed work intends to bridge this gap.

A recurring theme in our proposed system is personaliza-
tion and user collaboration. In a shared petabyte-scale sys-
tem, different groups of users will have differing needs. By
customizing the search/browse interface to each user, the
user can have a detailed view of the portion of the file sys-
tem he/she is most concerned with, without becoming over-
whelmed by extraneous portions of the file system.

Personalization is most effective when the system has large
amounts of user feedback in order to learn a model for each
user. This presents two problems. First, users must often
endure a period of poor performance before the user sees any
benefit from personalization. The second problem is given
the size of the file collection, each user will only interact
with a tiny fraction of the available files. We propose to solve
these problems by using a combination of content-based and
collaborative recommendations. Content-based recommen-
dations measure the similarity of the internal structure, in
this case the faceted metadata, of relevant files to make sug-
gestions to a user. Collaborative recommendations on the
other hand, make suggestions based on the similarity of the
users/queries and which files were considered the most rele-
vant to each query. This hybrid approach has found success
in large scale e-commerce systems for document recommen-
dation [21], and can easily be adapted to this domain.

Applying faceted search to file systems present some unique
challenges from a IR perspective. IR research into faceted
search has primarily been concerned with homogenous doc-
ument collections. In file systems, homogeneity is not as-
sured. Each type of file could potentially have widely differ-
ent facets. We propose two different approaches to handle
this. The first method is to use personalization and user
collaboration to present the facets that are most useful to
users.

Relevant files are determined by noting which files are ac-
cessed after each query. Since each user is likely to see
only a small fraction of the files that are relevant to his/her
query, the users must work together in order to improve the
search experience for all. This is accomplished through a

combination of content-based and collaborative recommen-
dations. Once the set of most useful facets are determined,
these facets are initially presented to the user during the
search/browse interaction. The intuition behind this idea
is that some facets contain information that is more recog-
nizable to users, and therefore the browse/search interface
should focus on those facets rather than overwhelming the
users with more esoteric facets.

The second approach is to present a “zooming” interface. [13]
In this approach, the browsing/querying interface presents
the facets that are both prevalent the files returned by the
current query, and have values suitable for query refinement.
As the user navigates towards files of a specific type, the
facets that are specific to those files become available for
query refinement. Zooming interfaces are potentially use-
ful since they present users with the major features of the
current search space, while simultaneously avoiding over-
whelming users with minutiae.

Depending on the specifics of the types of files stored in
the repository, there may not be facets that are common
to all files that are also useful for users. In this case, it
may become necessary to group facets with similar seman-
tics together. This is known as the “linkage problem,” and
it has been studied in both the IR and database research
communities. [5].

One possible approach to solving this problem is to cluster
the facets with common values together. For example, sup-
pose a file repository that contains both design documents
and C source code. The design documents and source code
files feature the facets author and developer respectively. If
the design documents and the source code are written by
same persons, then these two facets can be combined to cre-
ate the author/developer metafacet. Combining these facets
not only reduces the amount of information to display in the
user interface, but also groups files together in an intuitive
way.

Another problem with current faceted search interfaces is
choosing which values for a facet should be suggested to a
user for query refinement. Current selection methods either
naively suggest the pairs that most frequently occur in the
current search results, or simply avoid the issue by present-
ing every possible value for a facet. We propose to solve
this problem by personalizing the search interface with a
technique similar to that used for selecting relevant facets.

Finally, collaborative and content-based recommendations
can be used to help rank the files returned by a query in
order of relevance. Proper ranking of results for queries for
file system is an open problem in the IR community [11, 18,
17]. Current file systems maintain little information about
the relationships among stored files.

6. CONCLUSION

This paper highlights some of the problems with traditional
file access mechanisms when applied to petabyte-scale data
stores. We presented faceted search as one possible approach
to alleviating these problems, and gave an overview of some
of the research into utilizing faceted metadata.



Currently, development is proceeding on two parallel tracks.
On the file system front, a prototype of ViewFS and QUASAR
is being developed. Research into the personalized user in-
terface is focused suggesting most relevant facets and facet-
values. Promising statistical models, along with a metrics
for evaluating user interface effectiveness have been created.

7. ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation IIS-0713111, the Department of Energy under award
DE-FC02-06ER25768, by Lawrence Livermore National Lab-
oratory, and by the industrial sponsors of the Storage Sys-
tems Research Center and Information Retrieval & Knowl-
edge Management Lab at the University of California, Santa
Cruz. We thank the members of the SSRC, IRKM and the
anonymous reviewers for their feedback.

8. REFERENCES

[1] S. Ames. The viewfs interface and query language.
UCSC tech report in preparation.

[2] S. Ames, N. Bobb, K. M. Greenan, O. S. Hofmann,
M. W. Storer, C. Maltzahn, E. L. Miller, and S. A.
Brandt. LiFS: An attribute-rich file system for storage
class memories. In Proceedings of Mass Storage
Systems and Technologies, May 2006.

[3] Apple Developer Connection. Working with Spotlight.
http://developer.apple.com/macosx/tiger /spotlight.html,
2004.

[4] Beagle Project. About beagle.
http://beagle-project.org/About.

[5] E. Elmacioglu, M.-Y. Kan, D. Lee, and Y. Zhang. Web
based linkage. In Proceedings of the Workshop on Web
Information and Data Management (WIDM 2007).

[6] C. Fellbaum, editor. WordNet: An Electronic Lezical
Database. MIT Press, 1998.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
’03), Bolton Landing, NY, Oct. 2003. ACM.

[8] D. Giampaolo. Practical File System Design with the
Be File System. Morgan Kaufman Publishers Inc., San
Francisco, CA, USA, 1998.

[9] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and
J. W. O. Jr. Semantic file systems. In Proceedings of
the 13th ACM Symposium on Operating Systems
Principles (SOSP ’91), pages 16-25. ACM Press,
December 1992.

[10] Google. Google desktop - features.
http://desktop.google.com/features, 2007.

[11] D. Hawking. Challenges in enterprise search. In
Proceedings of the Australasian Database Conference,
pages 15-26, January 2004.

[12] S. Henderson. Genre, task, topic and time: Facets of
personal digital document management. In
Proceedings of the 6th ACM SIGCHI New Zealand
Chapter’s International Conference on
Computer-Human Interaction (CHINZ ’05), pages 75
— 82, New York, NY, USA, 2005. ACM Press.

[13] A. K. Karlson, G. Robertson, D. C. Robbins,

M. Czerwinski, and G. Smith. Fathumb: A
facet-based interface for mobile search. In Proceedings

(19]

of CHI ’06, Human Factors in Computing Systems,
New York, NY, USA, 2006. ACM Press.

C. Maltzahn, N. Bobb, M. W. Storer, D. Eads, S. A.
Brandt, and E. L. Miller. Graffiti: A framework for
testing collaborative distributed metadata. In
Proceedings in Informatics, pages 97-111, 2007.

M. A. Olson. The design and implementation of the
inversion file system. In Proceedings of the Winter
1993 USENIX Technical Conference, pages 205-217,
January 1993.

Y. Padioleau and O. Ridoux. A logic file system. In
Proceedings of the 2003 USENIX Annual Technical
Conference, pages 99-112, June 2003.

S. Shah, C. A. N. Soules, G. R. Ganger, and B. D.
Nobel. Using provenance to aid in personal file search.
In Proceedings of USENIX Annual Technical
Conference (USENIX 2007), June 2007.

C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. In Proceedings of the
20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pages 119-132, New York, NY,
USA, 2005. ACM Press.

E. Stoica, M. A. Hearst, and M. Richardson.
Automating creation of hierarchical faceted metadata
structures. In Proceedings of Human Language
Technologies: The Annual Conference of the North
American Chapter of the Association for Computation
Linguistics (NAACL-HLT 2007). NAACL-HLT, 2007.
D. Tunkelang. Dynamic category sets: An approach
for faceted search. In Faceted Search Workshop 06,
2006.

Y. Zhang and J. Koren. Efficient bayesian hierarchical
user modeling for recommendation systems. In
Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’07), New York, NY,
USA, July 2007. ACM Press.



